Недвижимость

Презентация "математические софизмы". Математические софизмы и парадоксы - презентация Скачать презентацию математические софизмы 5 6 кл

Cлайд 1

Cлайд 2

Немного из истории софизма Термин “софизм” впервые был введён Аристотелем, происходит от древнегреческого слова sophisma - «мастерство, хитрая уловка, выдумка, мнимая мудрость».

Cлайд 3

Примеры софизмов, знаменитых ещё в древности «Что ты не терял, то имеешь; рога ты не терял; значит у тебя есть рога» «Сидящий встал; кто встал, тот стоит; следовательно, сидящий стоит» «Этот пес твой; он отец; значит, он твой отец» «- Знаете ли вы, о чем я сейчас хочу вас спросить? - Нет. - Неужели вы не знаете, что лгать нехорошо? - Конечно, знаю. - Но именно об этом я и собирался вас спросить, а вы ответили, что не знаете; выходит, вы знаете то, чего вы не знаете»

Cлайд 4

Софизмы существуют уже более двух тысячелетий. Их возникновение обычно связывается с философской деятельностью софистов (Древняя Греция V-IV вв. до н.э.) - платных учителей мудрости, учивших всех желающих философии, логике и, особенно, риторике (науке и искусству красноречия). Самые известные представители направления софистики в Древней Греции - Протагор, Горгий, Продик.

Cлайд 5

Классификация софизмов Лекарства «Лекарство, принимаемое больным, есть добро. Чем больше делать добра, тем лучше. Значит, лекарств нужно принимать как можно больше». Вор «Вор не желает приобрести ничего дурного. Приобретение хорошего есть дело хорошее. Следовательно, вор желает хорошего». логические алгебраические Единица равна нулю Возьмем уравнение х-а=0, разделим обе части уравнения на (х-а), получаем (х-а)/(х-а)=0/(х-а) и отсюда 1=0. Ошибка: Ошибка в том, что х-а равно нулю, а на ноль делить нельзя.

Cлайд 6

терминологические «Все углы треугольника = π» в смысле «Сумма углов треугольника = π» «сколько пять плюс два умножить на два?» Здесь трудно решить имеется ли в виду 9 (т.е. 5 + (2*2)) или 14 (т.е. (5 + 2) * 2). . арифметические Один рубль не равен ста копейкам. 1 р.= 100 коп. 10 р.= 1000 коп. Умножим обе части этих верных равенств, получим: 10 р.= 100000 коп., откуда следует: 1 р.= 10000 коп., т.е. 1 р. не равен 100 коп. Ошибка: Ошибка, допущенная в этом софизме, состоит в нарушении правил действия с именованными величинами: все действия, совершаемые над величинами, необходимо совершать также и над их размерностями.

Cлайд 7

геометрические «из точки на прямой можно опустить два перпендикуляра» Попытаемся "доказать", что через точку, лежащую вне прямой, к этой прямой можно провести два перпендикуляра. С этой целью возьмем треугольник АВС. На сторонах АВ и ВС этого треугольника, как на диаметрах, построим полуокружности. Пусть эти полуокружности пересекаются со стороной АС в точках Е и D. Соединим точки Е и D прямыми с точкой В. Угол АЕВ прямой, как вписанный, опирающийся на диаметр; угол ВDС также прямой. Следовательно, ВЕ перпендикулярна АС и В D перпендикулярна АС. Через точку В проходят два перпендикуляра к прямой АС.

Cлайд 8

Чем же полезны софизмы для изучающих физику? Что они могут дать? Разбор софизмов, прежде всего, развивает логическое мышление, то есть прививает навыки правильного мышления. Что особенно важно, разбор софизмов помогает сознательному усвоению изучаемого материала, развивает наблюдательность, вдумчивость и критическое отношение к тому, что изучается. Наконец, разбор софизмов увлекателен. Чем труднее софизм, тем большее удовлетворение доставляет его анализ. Ценно, не то, что ошибок не совершил, а то, что нашел причину ошибки и устранил её.

учитель математики

Ливадийского УВК

Постернакова Ольга Глебовна


ПОНЯТИЕ СОФИЗМА

Софизм - (от греческого sophisma – уловка, ухищрение, выдумка, головоломка), умозаключение или рассуждение, обосновывающее какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям.


  • Софистами называли группу древнегреческих философов 4-5 века до н.э., достигших большого искусства в логике. В период падения нравов древнегреческого общества (5 век) появляются так называемые учителя красноречия, которые целью своей деятельности считали и называли приобретение и распространения мудрости, вследствие чего они именовали себя софистами.

  • Наиболее известна деятельность старших софистов, к которым относят Протагора из Абдеры, Горгия из Леонтип, Гиппия из Элиды и Продика из Кеоса.

  • Известнейший ученый и философ Сократ по началу был софистом, активно участвовал в спорах и обсуждениях софистов, но вскоре стал критиковать учение софистов и софистику в целом. Философия Сократа была основана на том, что мудрость приобретается с общением, в процессе беседы.

  • Запрещенные действия;
  • пренебрежение условиями теорем; формул и правил;
  • ошибочный чертеж;
  • опора на ошибочные умозаключения.

ФОРМУЛА УСПЕШНОСТИ СОФИЗМА

  • Успешность софизма определяется следующей формулой:

a + b + c + d + e + f ,

где (a + с + е) составляет показатель силы диалектика, (b + d + f) есть показатель слабости его жертвы.

  • а - отрицательные качества лица (отсутствие развития способности управлять вниманием). b - положительные качества лица (способность активно мыслить) с - аффективный элемент в душе искусного диалектика d - качества, которые пробуждаются в душе жертвы софиста и омрачают в ней ясность мышления е - категоричность тона, не допускающего возражения, определённая мимика f - пассивность слушателя
  • а - отрицательные качества лица (отсутствие развития способности управлять вниманием).
  • b - положительные качества лица (способность активно мыслить)
  • с - аффективный элемент в душе искусного диалектика
  • d - качества, которые пробуждаются в душе жертвы софиста и омрачают в ней ясность мышления
  • е - категоричность тона, не допускающего возражения, определённая мимика
  • f - пассивность слушателя

  • Сумма любых двух одинаковых чисел равна нулю.
  • Возьмем произвольное не равное нулю число а и напишем уравнение х = а. Умножая обе его части на (-4а), получим -4ах = -4а 2 . Прибавляя к обеим частям последнего равенст­ва х 2 и перенеся член -4а 2 влево с противоположным зна­ком, получим х 2 -4ах + 4a 2 = х 2 , откуда, замечая, что слева стоит полный квадрат, имеем
  • (х-2а) 2 = х 2 , х-2а = х.
  • Заменяя в последнем равенстве х на равное ему число а, по­лучим а-2а = а, или -а = а, откуда 0 = a + a,
  • т. е. сумма двух произвольных одинаковых чисел а равна 0.

  • Все числа равны между собой
  • Докажем, что 5=6.
  • Запишем равенство:
  • 35+10-45=42+12-54
  • Вынесем за скобку общие
  • множители: 5∙(7+2-9)=6∙(7+2-9).
  • Разделим обе части этого равенства на
  • общий множитель (он заключен в скобки):
  • 5∙(7+2-9)=6∙(7+2-9).
  • Значит, 5=6 .

  • «Дважды два равно пяти».
  • Обозначим 4=а, 5=b, (a+b)/2=d. Имеем: a+b=2d, a=2d-b, 2d-a=b. перемножим два последних равенства по частям. Получим: 2da-a*a=2db-b*b. Умножим обе части получившегося равенства на –1 и прибавим к результатам d*d. Будем иметь: a 2-2da+d2=b2 -2bd+d2, или (a-d)(a-d)=(b-d)(b-d), откуда a-d=b-d и a=b, т.е. 2*2=5

  • « Спичка вдвое длиннее телеграфного столба»
  • Пусть а дм - длина спички и b дм - длина столба. Разность между b и a обозначим через c .
  • Имеем b - a = c, b = a + c. Перемножаем два эти равенства по частям, находим: b 2 - ab = ca + c 2 . Вычтем из обеих частей bc. Получим: b 2 - ab - bc = ca + c 2 - bc, или b(b - a - c) = - c(b - a - c), откуда: b = - c, но c = b - a, поэтому b = a - b, или a = 2b.

ТРИГОНОМЕТРИЧЕСКИЙ СОФИЗ м

  • Бесконечное большое число равно нулю
  • Если острый угол увеличивается. Приближаясь к 900 как к пределу, то его тангенс, как известно, неограниченно растёт по абсолютной величине, оставаясь положительным: tg90 0 = +∞.
  • Но если взять тупой угол и уменьшить его, приближая к 900 как к пределу, то его тангенс, оставаясь отрицательным, также неограниченно растёт по абсолютной величине: tg90 0 = - ∞.
  • Сопоставим формулы (1) и (2): - ∞ = +∞

  • «Самое быстрое существо не способно догнать самое медленное»
  • Быстроногий Ахиллес никогда не настигнет медлительную черепаху. Пока Ахиллес добежит до черепахи, она продвинется немного вперед. Он быстро преодолеет и это расстояние, но черепаха уйдет еще чуточку вперед. И так до бесконечности. Всякий раз, когда Ахиллес будет достигать места, где была перед этим черепаха, она будет оказываться хотя бы немного, но впереди.

  • «Софизм Кратила»
  • Диалектик Гераклит, провозгласив тезис "все течет", пояснял, что в одну и ту же реку (образ природы) нельзя войти дважды, ибо когда входящий будет входить в следующий раз, на него будет течь уже другая вода. Его ученик Кратил, сделал из утверждения учителя другие выводы: в одну и ту же реку нельзя войти даже один раз, ибо пока ты входишь, она уже изменится.

  • «Сидящий встал; кто встал, тот стоит; следовательно, сидящий стоит».
  • «Сократ - человек; человек - не то же самое, что Сократ; значит, Сократ - это нечто иное, чем Сократ».
  • «Для того чтобы видеть, вовсе необязательно иметь глаза, ведь без правого глаза мы видим, без левого тоже видим; кроме правого и левого, других глаз у нас нет; поэтому ясно, что глаза не являются необходимыми для зрения».
  • «Тот, кто лжет, говорит о деле, о котором идет речь, или не говорит о нем; если он говорит о деле, он не лжет; если он не говорит о деле, он говорит о чем-то несуществующем, а о нем невозможно не только лгать, но даже мыслить и говорить».

  • «Одна и та же вещь не может иметь какое-то свойство и не иметь его. Хозрасчет предполагает самостоятельность, заинтересованность и ответственность. Заинтересованность - это, очевидно, не ответственность, а ответственность - не самостоятельность. Получается вопреки сказанному вначале, что хозрасчет включает самостоятельность и несамостоятельность, ответственность и безответственность».
  • «Акционерное общество, получившее когда-то ссуду от государства, те-перь ему уже не должно, так как оно стало иным: в его правлении не осталось никого из тех, кто просил ссуду».

  • "Предмет математики настолько серьезен,что полезно не упускать случаев сделать его немного занимательным".
  • Б. Паскаль
  • Тема занятия
  • «Математические софизмы»
  • Цель занятия:
  • Углубить знания по математике. Интересно и организованно проверить знания у присутствующих по математике.
  • 2. Развивать логику, воображение, творчество.
  • 3. Повлиять на познавательную активность коллег в сторону её интенсификации.
  • Софизм - доказательство ложного утверждения, причем ошибка в доказательстве искусно замаскирована
  • Софизм - слово греческого происхождения и в переводе означает головоломку, хитроумную выдумку. Математические софизмы являются примерами таких ошибок в математических рассуждениях, когда при очевидной неправильности результата ошибка, приводящая к нему, хорошо замаскирована.
  • К софизмам можно отнести доказательство того, что Ахиллес, бегущий в 10 раз быстрее черепахи, не сможет ее догнать.
  • Пусть черепаха на 100 м впереди Ахиллеса.
  • Тогда Ахиллес пробежит эти 100 м, черепаха будет впереди его на 10 м.
  • Пробежит Ахиллес эти 10 м, а черепаха окажется впереди на 1 м и т.д.
  • Расстояние между ними будет сокращаться, но никогда не обратится в нуль. Значит Ахиллес никогда не догонит черепаху
  • Софистами называют группу древнегреческих философов 4-5 вв. до н.э., достигших большого искусства в логике.
  • В истории математики софизмы
  • играли существенную роль, они способствовали более глубокому уяснению понятий и методов математики.
  • Академик Иван Петрович Павлов говорил, что «правильно понятая ошибка – это путь к откровению». Уяснение ошибок в математических рассуждениях часто содействовало развитию математики. В этом плане особенно поучительна история аксиомы Евклида о параллельных прямых.
  • Примеры
  • Если равны половины, то равны и целые.
  • Полуполное есть то же, что и полупустое, полное – то же самое, что и пустое
  • Найдите ошибки в следующих рассуждениях:
  • Задача № 1.
  • Четырежды четыре – двадцать пять.
  • Доказательство:
  • 16:16=25:25
  • 16 (1:1)=25(1:1)
  • 4*4=25
  • Ответ: Ошибка заключается в том, что распределительный закон умножения автоматически переносится на деление, что неверно
  • Задача № 2
  • С руб.=10000 С коп.
  • Доказательство:
  • С руб. = 100 С коп.
  • 1 руб. = 100 коп.
  • Ответ: Умножать С руб., на 1 рубль нельзя, так как никаких «квадратных рублей» и «квадратных копеек» не существует
  • Практическая задача
  • После нового года цена на товар повысились дважды на 20 %. На сколько процентов повысилась цена товар после двух последовательных повышений?
  • Решение: стоимость товара – а руб.
  • после 1 повышения - 1,2 а руб.
  • после 2 повышения – 1,44 а руб.
  • Вывод: цена на товар повысилась на 44 %.
  • Всякие два равенства можно почленно перемножить. Применим это утверждение к написанным выше равенствам, получим новые равенства
  • С руб. = 10000 С коп
  • Ответ: следует задать вопрос: «Вы живете в этом городе?»
  • Ответ: «Да» - независимо от того, кто отвечает – житель города А или житель города Б означает, что Вы находитесь в городе А. Ответ: «Нет» при любых условиях будет означать, что Вы находитесь в городе Б.
  • Логическая задача – шутка:
  • Два города А и Б расположены рядом. Жители обоих городов часто навещают друг друга. Известно, что все жители города А всегда говорят только правду, а жители города Б всегда лгут.
  • Какой вопрос следует задать жителю, которого Вы встречаете в одном из городов (Вы не знаете в каком), чтобы по его ответу «Да» или «Нет» можно было сразу определить в каком городе Вы находитесь.
  • Математические софизмы могут быть очень полезны. Разбор софизмов развивает логическое мышление, помогает сознательному усвоению обучаемого материала, воспитывает вдумчивость, наблюдательность, критическое отношение к тому, что изучается. Кроме того, разбор софизмов увлекателен. Учащиеся с большим интересом воспринимают софизмы, и, чем труднее софизм, тем больше удовлетворение доставляет его разбор.
  • Особенно интересно эта работа может быть поставлена на дополнительных занятия учащихся старших классов. Знания по математике в начальном и среднем звене еще невелики. Однако на дополнительных занятиях можно познакомить учащихся с несложными математическими софизмами, основанными на нарушении законов действия. При этом, если учесть, что учащиеся начальной и средней школы склонны эмоционально реагировать на абсурдность утверждений, прочность усвоения математического факта значительно повышается
  • В педагогическом плане математические софизмы должны использоваться не столько для предупреждения ошибок, сколько для проверки степени сознательности усвоения материала. Начинать надо с самых простых софизмов, доступных пониманию учащихся, постепенно усложняя задачи по мере накопления учащимися математических знаний.
  • (кликните на картинке)

Слайд 2

Цель проекта: Значение математических софизмов в развитии логического мышления школьников.

Задачи проекта: Познакомиться с понятием – софизм. Рассмотреть примеры математических софизмов. Провести исследование по школе среди учащихся 6-х, 7-х и 9-х классов. Проанализировать полученные результаты. Используемые методы: Изучение литературы Решение математических задач Сбор и обработка данных с помощью информационных технологий Создание презентации

Слайд 3

Что такое софизм

Софизм (от греч. sophisma – уловка, выдумка, головоломка), формально кажущееся правильным, но по существу ложное умозаключение, основанное на преднамеренно неправильном подборе исходных положений. Виды математических софизмов: Арифметические софизмы Алгебраические софизмы Геометрические софизмы Правильно понятая ошибка – это путь к открытию И.П. Павлов.

Слайд 4

Примеры алгебраических софизмов

Пример 1. 1 р. = 10 000 к. Возьмём верное равенство: 1 р. = 100 к. Возведём его по частям в квадрат. Мы получим: 1 р. = 10 000 к. Вопрос: В чём ошибка? Ответ: Возведение в квадрат величин не имеет смысла. В квадрат возводятся только числа. Пример 2 5=6 Попытаемся доказать, что 5 = 6. С этой целью возьмём числовое тождество: 35 + 10 – 45 = 42 + 12 – 54. Вынесем общие множители левой и правой частей за скобки. Получим: 5 (7 + 2 – 9) = 6 (7 + 2 – 9). Разделим обе части этого равенства на общий множитель (заключённый в скобки). Получаем 5=6 Вопрос: В чём ошибка? Ответ: Общий множитель (7 + 2 – 9) равен 0, а делить на 0 нельзя.

Слайд 5

Примеры геометрических софизмов

Загадочное исчезновение У нас есть произвольный прямоугольник, на котором начерчено 13 одинаковых линий на равном расстоянии друг от друга, так, как показано на рис. 1. Теперь «разрежем» прямоугольник прямой MN, проходящей через верхний конец первой и нижний конец последней линии. Сдвигаем обе половины вдоль по этой линии и замечаем, что линий вместо 13 стало 12. Одна линия исчезла бесследно. Вопрос: Куда исчезла 13-я линия? Ответ: 13-я линия удлинила каждую из оставшихся на 1/12 своей длины. «Новое доказательство» теоремы Пифагора Возьмём прямоугольный треугольник с катетами a и b, гипотенузой c и острым углом , противолежащим катету a. Имеем: a = c sin , b = c cos , откуда a2 = c2 sin2, b2 = c2 cos2. Просуммировав по частям эти равенства, получаем: a2 + b2 = c2 (sin2 + cos2). Но sin2 + cos2 = 1, и поэтому a2 + b2 = c2. Вопрос: В чём ошибка? Ответ: Ошибки здесь нет. Но формула sin2 + cos2 = 1 сама выводится на основании теоремы Пифагора. N M Рис. 1

Слайд 6

Проведение исследования

Тема исследования «Нахождение ошибки в доказательстве софизма» Метод исследования – эксперимент Участники исследования – учащиеся 6,7,9 классов школы Задача исследования: возможность нахождения ошибки в доказательстве софизма

Слайд 7

Нахождение ошибки в доказательстве софизмов

Алгебраические софизмы Пример 1.1 р. = 10 000 к. Пример 2.5 = 6 Пример 3.2 + 2 = 5 Пример 4.Любое число равно его половине Пример 5.Расстояние от Земли до Солнца равно толщине волоска Пример 6.Любое число = 0 Геометрические софизмы Пример 1.Загадочное исчезновение. Пример 2.Земля и апельсин. Пример 3.Два перпендикуляра. Пример 4.«Новое доказательство» теоремы Пифагора.

Слайд 8

Основные ошибки в софизмах

Деление на 0; неправильные выводы из равенства дробей; неправильное извлечение квадратного корня из квадрата выражения; нарушения правил действия с именованными величинами; путаница с понятиями “равенства” и “эквивалентность” в отношении множеств; проведение преобразований над математическими объектами, не имеющими смысла; неравносильный переход от одного неравенства к другому; выводы и вычисления по неверно построенным чертежам; ошибки, возникающие при операциях с бесконечными рядами и предельным переходом.

Cлайд 1

Математические софизмы Презентацию сделала ученица 7 класса Верхеиндырчинской основной школы Фатыхова Аделя

Cлайд 2

Введение История математики полна неожиданных и интересных софизмов и парадоксов. И зачастую именно их разрешение служило толчком к новым открытиям, из которых в свою очередь произрастали новые софизмы и парадоксы. В истории развития математики софизмы играли существенную роль.

Cлайд 3

Они способствовали повышению строгости в математических рассуждениях и содействовали более глубокому уяснению понятий и методов математики. Роль софизмов в развитии математики сходна с той ролью, какую играли непреднамеренные ошибки в математических доказательствах, допускаемые даже выдающимися математиками. Большинство софизмов известно очень давно, и можно найти в различных сборниках, журналах. Некоторые из них передаются устно из поколения в поколение.

Cлайд 4

Понятие «Софизм» Софизм – (от греческого sophisma , «мастерство, умение, хитрая выдумка, уловка») - умозаключение или рассуждение, обосновывающее какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям. Софизм основан на преднамеренном, сознательном нарушении правил логики. Каким бы ни был софизм, он всегда содержит одну или несколько замаскированных ошибок.

Cлайд 5

Математический софизм – удивительное утверждение, в доказательстве которого кроются незаметные, а подчас и довольно тонкие ошибки. Очень часто понимание ошибок в софизме ведет к пониманию математики в целом, помогает развивать логику и навыки правильного мышления. Если нашел ошибку в софизме, значит, ты ее осознал, а осознание ошибки предупреждает от ее повторения в дальнейших математических рассуждениях. Софизмы не приносят пользы, если их не понимать.

Cлайд 6

Cлайд 7

Экскурс в Историю Софизмы появились еще в Древней Греции. Они тесно связаны с философской деятельностью софистов - платных учителей мудрости, учивших всех желающих философии, логике и, особенно, риторике (науке и искусству красноречия). Наиболее известна деятельность старших софистов, к которым относят Протагора из Абдеры, Горгия из Леонтип, Гиппия из Элиды и Продика из Кеоса. Одна из основных задач софистов заключалась в том, чтобы научить человека доказывать (подтверждать или опровергать) все, что угодно, выходить победителем из любого интеллектуального состязания. Для этого они разрабатывали разнообразные логические, риторические и психологические приемы.

Cлайд 8

К логическим приемам нечестного, но удачного ведения дискуссии и относятся софизмы. Однако, одних только софизмов для победы в любом споре недостаточно. Ведь если объективная истина окажется не на стороне спорящего, то он, в любом случае, проиграет полемику, несмотря на все свое софистическое искусство. Это хорошо понимали и сами софисты. Поэтому помимо различных логических, риторических и психологических уловок в их арсенале была важная философская идея (особенно дорогая для них), состоявшая в том, что никакой объективной истины не существует: сколько людей, столько и истин. Софисты утверждали, что все в мире субъективно и относительно. Если признать эту идею справедливой, то тогда софистического искусства будет вполне достаточно для победы в любой дискуссии: побеждает не тот, кто находится на стороне истины, а тот, кто лучше владеет приемами полемики.

Cлайд 9

Аристотель называл софизмом «мнимые доказательства »,в которых обоснованность заключения кажущаяся и обязана чисто субъективному впечатлению, вызванному недостаточностью логического анализа. Убедительность на первый взгляд многих софизмов, их «логичность» обычно связана с хорошо замаскированной ошибкой - семиотической: за счёт метафоричности речи, нарушающих однозначность мысли и приводящих к смешению значений терминов, или же логической: подмена основной мысли (тезиса) доказательства, принятие ложных посылок за истинные, несоблюдение допустимых способов рассуждения (правил логического вывода), использование «неразрешённых» или даже «запрещённых» правил или действий, например деления на нуль в математических софизмах.

Cлайд 10

Исторически с понятием «софизм» неизменно связывают идею о намеренной фальсификации, руководствуясь признанием Протагора, что задача софиста (софист, от греч. sophistes - умелец, изобретатель, мудрец, лжемудрец) - представить наихудший аргумент как наилучший путём хитроумных уловок в речи, в рассуждении, заботясь не об истине, а об успехе в споре или о практической выгоде. С этой же идеей обычно связывают «критерий основания», сформулированный Протагором: мнение человека есть мера истины.

Cлайд 11

Алгебраические софизмы. Алгебра - один из больших разделов математики, принадлежащий наряду с арифметикой и геометрией к числу старейших ветвей этой науки. Задачи, а также методы, отличающие её от других отраслей математики, создавались постепенно, начиная с древности. Алгебра возникла под влиянием нужд общественной практики, в результате поисков общих приёмов для решения однотипных арифметических задач. Приёмы эти заключаются обычно в составлении и решении уравнений. Т.е. алгебраические софизмы – намеренно скрытые ошибки в уравнениях и числовых выражениях.

Cлайд 12

Итак у меня есть к вам и к себе интересная задачка для разминки ума... ...используя простейшие математические преобразования и формулы всем нам известные со школы, я могу доказать, что, при условии a=b+c "a" расняется "c" ...не верите?! смотрите: a=b+с Умножим обе части на a-b a2-ab=ab+ac-b2-bc Переносим ac в левую часть a2-ab-ac =ab-b2-bc Разложим на множители a(a-b-c)=b(a-b-c) Разделим обе части на a-b-c Получаем: a=b

Cлайд 13

Четыре ученицы – Мария, Нина, Ольга и Поля – участвовали в лыжных соревнованиях и заняли 4 первых места. На вопрос, кто какое место занял, они дали три разных ответа: 1) Ольга заняла 1-е место, Нина – 2-е, 2) Ольга – 2-е, Поля – 3-е, 3) Мария - 2-е, Поля – 4-е. Отвечавшие при этом признали, что одно из высказываний каждого ответа верно, а другое неверно. Какое место заняла каждая из учениц?

Cлайд 14

Решение. На рисунках 1 и 2 точки «верхнего» множества соответствуют именам учениц, а «нижнего» - занятым местам. Сплошные отрезки соответствуют высказываниям первой ученицы, штриховые – второй, штрихпунктирные – третьей. Отрезки, соответствующие ложному высказыванию, будем перечеркивать. Предположим, что Нина заняла второе место. В таком случае (рис. 1) Поля заняла третье и четвертое места, что по условию задачи невозможно. Предположим, что Оля заняла 1-е место (рис. 2), тогда Мария заняла 2-е место, Поля - 3-е место, Нина – 4-е.

Cлайд 15

Заключение. О математических софизмах можно говорить бесконечно много, как и о математике в целом. Изо дня в день рождаются новые парадоксы, некоторые из них останутся в истории, а некоторые просуществуют один день. Софизмы есть смесь философии и математики, которая не только помогает развивать логику и искать ошибку в рассуждениях. Буквально вспомнив, кто же такие были софисты, можно понять, что основной задачей было постижение философии. Но тем не менее, в нашем современном мире, если и находятся люди, которым интересны софизмы, в особенности математические, то они изучают их как явление только со стороны математики, чтобы улучшить навыки правильности и логичности рассуждений.

Cлайд 16

Понять софизм как таковой (решить его и найти ошибку) получается не сразу. Требуются определенный навык и смекалка. Некоторые софизмы приходилось разбирать по нескольку раз, чтобы действительно в них разобраться, некоторые же наоборот, казались очень простыми. Развитая логика мышления поможет не только в решении каких-нибудь математических задач, но еще может пригодиться в жизни. Мы поняли, что софистика-это целая наука, а именно математические софизмы - это лишь часть одного большого течения. Исследовать софизмы действительно очень интересно и необычно. Порой сам попадаешься на уловки софиста, на столь безукоризненность его рассуждений. Перед тобой открывается какой-то особый мир рассуждений, которые поистине кажутся верными. Благодаря софизмам и парадоксам можно научится искать ошибки в рассуждениях других, научится грамотно строить свои рассуждения и логические объяснения.

Cлайд 17

Литература 1. Lietzman W. Wo steckt der Fehler? Mathematische Trugschlüsse und Warnzeichen. – Leipzig? 1952 2. Аменицкий Н. Математические развлечения и любопытные приемы мышления. – М., 1912 3. Богомолов С. А. Актуальная бесконечность. – М.; Л., 1934 4. Больцано Б. Парадоксы бесконечного. – Одесса, 1911 5. Брадис В. М., Харчева А. К. Ошибки в математических рассуждениях. – М., 1938 6. Горячев Д. Н., Воронец А. М. Задачи, вопросы и софизмы для любителей математики. – М., 1903 7. Литцман В., Трир Ф. Где ошибка? – СПб., 1919 8. Лямин А. А. Математические парадоксы и интересные задачи. – М., 1911 9. Мадера А.Г., Мадера Д.А. Математические софизмы. – М.: Просвещение, 2003 10. Обреимов В. И. Математические софизмы. – 2-е изд. – СПб., 1889.